Un grup de cercetători a reușit să creeze o gaură neagră într-un laborator. Care a fost scopul experimentului

Black hole. Elements of image furnished by NASA
Ilustrație gaură neagră. Foto: profimedia Images

Fizicieni israelieni de la Institutul Tehnologic Technion din Haifa au reușit să genereze o micro-gaură neagră în laborator în încercarea de a demonstra o teorie formulată de astrofizicianul Stephen Hawking. Conform acesteia, găurile negre emit spontan o formă de radiație, un fenomen nedemonstrat până acum, ce poartă numele de radiația Hawking, conform Live Science, citat de Agerpres.

Gaura neagră generată de cercetători în laborator era alcătuită dintr-un flux de gaz format din aproximativ 8.000 de atomi de rubidiu răciţi până aproape de zero absolut şi menţinuţi laolaltă de o rază laser. Astfel, ei au creat o stare exotică a materiei, denumită „condensat Bose-Einstein” (BEC), stare în care aceste câteva mii de atomi se comportă la unison, ca şi când ar fi un singur atom.

Folosind o a doua undă laser, echipa a creat un vârf de energie potenţială, ceea ce a dus la formarea unei „cascade” din gazul folosit în experiment, similară unei cascade obişnuite şi obţinând un orizont al evenimentului în care jumătate dintre atomii de gaz se deplasau cu o viteză supersonică, în timp ce cealaltă jumătate se deplasau cu o viteză mai mică. În cadrul acestui experiment, echipa a căutat perechi de fononi (unde sonice cuantice) care se formează în mod spontan în gaz, în loc de perechi de fotoni.

Astfel, un fonon din partea subsonică a experimentului poate să călătorească în amontele fluxului de gaz, îndepărtându-se de vârful de energie potenţială, în timp ce un fonon din jumătatea supersonică a fluxului rămâne prizonier în „cascadă”. „Este ca şi cum ai încerca să înoţi împotriva unui curent care este mai rapid decât viteza ta maximă de înot. Adică este la fel ca şi când te-ai afla în interiorul unei găuri negre de unde este imposibil să mai atingi orizontul evenimentului”, a explicat profesorul Jeff Steinhauer, profesor asociat de fizică la Institutul Technion.

Odată ce au detectat aceste perechi de fononi, cercetătorii au trebuit să confirme dacă erau corelate şi dacă radiaţia Hawking rămâne constantă de-a lungul timpului (dacă este staţionară). Acest proces a fost dificil, pentru că ori de câte ori fotografiau „gaura neagră” generată, aceasta era distrusă de căldura rezultată în acest proces. În consecinţă, echipa a repetat experimentul de nu mai puţin de 97.000 de ori şi a avut nevoie de peste 124 de zile de măsurători continue pentru a evidenţia aceste corelaţii dintre fononi. În cele din urmă, răbdarea le-a fost răsplătită.

„Am demonstrat că radiaţia Hawking este staţionară, ceea ce înseamnă că nu se modifică în timp, ceea ce este exact lucrul prezis de Stephen Hawking”, a subliniat profesorul Steinhauer.

Teoria lui Stephen Hawking

În 1974, astrofizicianul a lansat teoria conform căreia găurile negre, supermasivele puţuri gravitaţionale care distrug chiar şi stelele care se apropie prea mult de ele, nu sunt atât de „negre” precum se credea, întrucât pot emite în mod spontan radiaţii - un fenomen ce a primit numele de radiaţia Hawking, conform Live Science.

Această teorie nu a putut să fie verificată empiric pentru că niciun astronom nu a putut să observe vreodată radiaţia Hawking, iar cum manifestările naturale ale acestei radiaţii sunt imposibil de detectat în cazul găurilor negre cosmice, se părea că teoria lui Hawking va rămâne doar o teorie. Iată însă că lucrurile s-au schimbat şi, chiar dacă este în continuare imposibil să se apropie suficient de mult de o gaură neagră pentru a-i studia emisiile de radiaţii, oamenii de ştiinţă pot în schimb să genereze găuri negre miniaturale în condiţii de laborator.

Cercetătorii israelieni au reuşit să creeze în laborator echivalentul unei găuri negre din câteva mii de atomi. Ei şi-au propus să verifice două dintre cele mai importante predicţii lansate de Stephen Hawking - că emisia de radiaţie Hawking este un proces cuantic ce se produce spontan, din „nimic”, şi că această radiaţie este staţionară (nu-şi schimbă intensitatea în timp).

„O gaură neagră ar trebui să radieze la fel ca orice corp negru, care este un obiect cald ce emite în mod constant radiaţii în spectrul infraroşu”, spune Steinhauer. „Hawking a sugerat că găurile negre se comportă la fel ca toate stelele, care radiază în mod constant un anumit tip de energie. Aceasta este ipoteza pe care am dorit să o confirmăm prin studiul nostru şi am reuşit”, a adăugat el.

Gravitaţia unei găuri negre este atât de puternică, încât nici măcar lumina nu-i poate scăpa, odată ce particulele de lumină au trecut de orizontul evenimentului. Pentru a scăpa din orizontul evenimentului, orice particulă ar trebui să încalce legile fizicii şi să accelereze până la viteze hiperluminice.

Stephen Hawking a arătat că, deşi nicio particulă care trece dincolo de orizontul evenimentului nu mai poate evada din gaura neagră, găurile negre pot emite spontan radiaţii de la marginea orizontului evenimentului, conform principiilor mecanicii cuantice.

„Teoria lui Hawking a fost revoluţionară pentru că a combinat fizica teoriei câmpului cuantic cu relativitatea generală”, teoria lui Einstein, care descrie modul în care materia deformează continuul spaţiu-timp, a explicat profesorul Steinhauer pentru Live Science. „Ne-ar fi plăcut să putem verifica în spaţiu această teorie a radiaţiei cuantice, însă este foarte dificil în cazul unei găuri negre reale pentru că radiaţia Hawking este extrem de slabă prin comparaţie cu radiaţia de fundal a spaţiului” a adăugat el. Pentru a depăşi această problemă, Steinhauer şi colegii lui şi-au creat propria gaură neagră - una minusculă, de laborator.

Editor : Adrian Dumitru

Partenerii noștri
Confidenţialitatea ta este importantă pentru noi. Vrem să fim transparenţi și să îţi oferim posibilitatea să accepţi cookie-urile în funcţie de preferinţele tale.
De ce cookie-uri? Le utilizăm pentru a optimiza funcţionalitatea site-ului web, a îmbunătăţi experienţa de navigare, a se integra cu reţele de socializare şi a afişa reclame relevante pentru interesele tale. Prin clic pe butonul "DA, ACCEPT" accepţi utilizarea modulelor cookie. Îţi poţi totodată schimba preferinţele privind modulele cookie.
Da, accept
Modific setările
Alegerea dumneavoastră privind modulele cookie de pe acest site
Aceste cookies sunt strict necesare pentru funcţionarea site-ului și nu necesită acordul vizitatorilor site-ului, fiind activate automat.
- Afișarea secţiunilor site-ului - Reţinerea preferinţelor personale (inclusiv în ceea ce privește cookie-urile) - Reţinerea datelor de logare (cu excepţia logării printr-o platformă terţă, vezi mai jos) - Dacă este cazul, reţinerea coșului de cumpărături și reţinerea progresului unei comenzi
Companie Domeniu Politica de confidenţialitate
RCS&RDS S.A. digi24.ro Vezi politica de confidenţialitate
cmp_level, prv_level, m2digi24ro, stickyCookie
Studiu de Audienţă și Trafic Internet (prin CXENSE) brat.ro
cX_S, cX_P, cX_T
Google IDE google.com Vezi politica de confidenţialitate
IDE
Vă rugăm să alegeţi care dintre fişierele cookie de mai jos doriţi să fie utilizate în ce vă priveşte.
Aceste module cookie ne permit să analizăm modul de folosire a paginii web, putând astfel să ne adaptăm necesității userului prin îmbunătățirea permanentă a website-ului nostru.
- Analiza traficului pe site: câţi vizitatori, din ce arie geografică, de pe ce terminal, cu ce browser, etc, ne vizitează - A/B testing pentru optimizarea layoutului site-ului - Analiza perioadei de timp petrecute de fiecare vizitator pe paginile noastre web - Solicitarea de feedback despre anumite părţi ale site-ului
Companie Domeniu Politica de confidenţialitate
Google Analytics google.com Vezi politica de confidenţialitate
_ga, _gid, _gat, AMP_TOKEN, _gac_<property-id>, __utma, __utm, __utmb, __utmc, __utmz, __utmv
Aceste module cookie vă permit să vă conectaţi la reţelele de socializare preferate și să interacţionaţi cu alţi utilizatori.
- Interacţiuni social media (like & share) - Posibilitatea de a te loga în cont folosind o platformă terţă (Facebook, Google, etc) - Rularea conţinutului din platforme terţe (youtube, soundcloud, etc)
Companie Domeniu Politica de confidenţialitate
Facebook facebook.com Vezi politica de confidenţialitate
a11y, act, csm, P, presence, s, x-referer, xs, dpr, datr, fr, c_user
Youtube youtube.com Vezi politica de confidenţialitate
GED_PLAYLIST_ACTIVITY,APISID, GEUP, HSID, LOGIN_INFO, NID, PREF, SAPISID, SID, SSID, SIDCC, T9S2P.resume, VISITOR_INFO1_LIVE, YSC, dkv, s_gl, wide
Twitter twitter.com Vezi politica de confidenţialitate
_twitter_sess, auth_token, lang, twid, eu_cn, personalization_id, syndication_guest_id, tfw_exp
Instagram instagram.com Vezi politica de confidenţialitate
csrftoken, ds_user_id, ig_did, ig_cb, mcd, mid, rur, shbid, shbts, urlgen
Aceste module cookie sunt folosite de noi și alte entităţi pentru a vă oferi publicitate relevantă intereselor dumneavoastră, atât în cadrul site-ului nostru, cât și în afara acestuia.
- Oferirea de publicitate în site adaptată concluziilor pe care le tragem despre tine în funcţie de istoricul navigării tale în site și, în unele cazuri, în funcţie de profilul pe care îl creăm despre tine. Facem acest lucru pentru a menţine site-ul profitabil, în așa fel încât să nu percepem o taxă de accesare a site-ului de la cei care îl vizitează. - Chiar dacă astfel de module cookie nu sunt utilizate, te rugăm să reţii că ţi se vor afişa reclame pe site-ul nostru, dar acestea nu vor fi adaptate intereselor tale. Aceste reclame pot să fie adaptate în funcţie de conţinutul paginii.
Companie Domeniu Politica de confidenţialitate
CXENSE cxense.com Vezi politica de confidenţialitate
gcks, gckp, _cX_segmentInfo, cx_profile_timeout, cx_profile_data
Google DFP google.com Vezi politica de confidenţialitate
__gads, id, NID, SID, ANID, IDE, DSID, FLC, AID, TAID, exchange_uid, uid, _ssum, test_cookie, 1P_JAR, APISID, evid_0046, evid_0046-synced
Trimite
Vezi politica de confidențialitate